If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-24p^2+40p=0
a = -24; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-24)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-24}=\frac{-80}{-48} =1+2/3 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-24}=\frac{0}{-48} =0 $
| 5(3x+15)=75 | | 1+2u=11 | | X/3+x/4=5 | | 2x+1=1/4(1/2x+4) | | 0.89x+18=1.19x | | g+g-2=12 | | -4(n-8)=-2 | | x÷4=1÷2 | | q+(-5)/3=5 | | 3(2x+9)=-36+39 | | -(2/5)p+2=(1/5)0+11 | | 2n-3/5n=5 | | 1/5(5x-3)=2/3(1x+1/2) | | 99/n=25 | | x÷4=1/2 | | 13x−1= 9x−139x−13 | | -5(-x+2)=-4(2x-7) | | 17m=30 | | n2+8=9 | | -36-3p=-7(p+4) | | 14=-4t+6 | | 12y-18=(6y-9) | | 10p-5p-3=17 | | (-3x+12)/4=9 | | 3(q-7)11+8=8 | | 17=5+2w | | -42x=6(-3x-6) | | 9m/15=6/15+1 | | X+6=6(x-11) | | 5.2=a-0,4 | | 9m/15=16/15 | | 5(-6n-1)=-5-2n |